

Local Dynamics in Protease Recognition

Julian E. Fuchs, Hannes G. Wallnoefer, Susanne von Grafenstein, Roland G. Huber,
Gudrun M. Spitzer, Klaus R. Liedl

Department of Theoretical Chemistry, University of Innsbruck, Centre for Chemistry and Biomedicine, Innrain 80/82, 6020 Innsbruck, Austria

Proteases catalyze cleavage of peptide bonds and are vitally important in a wide range of fundamental cellular processes. Far more than 500 proteases have been identified in the human genome, each individually tied to a unique cleavage pattern [1]. These patterns reach from specificity for a single peptide in case of proteases involved in signaling cascades to broad spectra of cleaved peptides for digestive enzymes.

To analyze the impact of local dynamics on protease specificity, a series of homologous proteases including highly specific as well as unspecific proteases was selected. Inspired by information theory, subpocket-wise substrate cleavage entropy values are presented based on cleavage data from the MEROPS database [2]. Calculated entropy scores, ranging from 0 for a conserved substrate to 1 for a random distribution of substrates [3], appear to be qualitatively linked to local flexibility of the binding site region. Consequently, temperature factors from X-ray structures as well as all-atom 100ns molecular dynamics trajectories using the AMBER package [4] are compared in respect to subpocket specificity.

Analysis of specificity and flexibility patterns reveal a consistent correlation of binding site rigidity and specificity. As conformational plasticity is paralleled by a broader conformational space, a mechanism of conformational selection [5] in the binding process of proteases is proposed. According to this model, the whole conformational ensemble contributes to the substrate specificity of proteases rather than single interactions derived from a static point of view. This finding implies the need for refined rules for substrate cleavage considering binding site flexibility in agreement with earlier findings for snake venom metallo proteases [6].

Acknowledgement:

Supported by the Austrian Academy of Science (DOC-Fellowship awarded to JEF).

References:

- [1] X. S. Puente, L. M. Sanchez, C. M. Overall, C. Lopez-Otin, *Nat Rev Genet*, **2003**, 4, 544-548.
- [2] N. D. Rawlings, A. J. Barrett, A. Bateman, *Nucleic Acids Res*, **2012**, 40, D343-D350.
- [3] J. E. Fuchs, S. von Grafenstein, R. G. Huber, M. A. Margreiter, G. M. Spitzer, H. G. Wallnoefer, K. R. Liedl, *submitted*.
- [4] D. A. Case et al. **2008**, AMBER10, University of California, San Francisco.
- [5] C. J. Tsai, R. Nussinov, *Protein Sci*, **1997**, 6, 24-42.
- [6] H. G. Wallnoefer, T. Lingott, J. M. Gutierrez, I. Merfort, K. R. Liedl, *J Am Chem Soc*, **2010**, 132, 10330-10337.